
Prototyping an Armored Data Vault

Rights Management on Big Brother’s Computer ?

Alex Iliev and Sean Smith

Department of Computer Science/Institute for Security Technology Studies
Dartmouth College

{sasho,sws}@cs.dartmouth.edu

DRAFT of April 22, 2002

Abstract. This paper reports our experimental work in using commer-
cial secure coprocessors to control access to private data. In our initial
project, we look at archived network traffic. We seek to protect the pri-
vacy rights of a large population of data producers by restricting compu-
tation on a central authority’s machine. The coprocessor approach pro-
vides more flexibility and assurance in specifying and enforcing access
policy than purely cryptographic schemes. This work extends to other
application domains, such as distributing and sharing academic research
data.

1 Introduction

This paper presents a snapshot of an ongoing experimental project to use high-
end secure coprocessors to arbitrate access to private data.

Our work was initially inspired by Michigan’s Packet Vault project [2], which
examined the engineering question of how a central authority, such as law en-
forcement or university administration, might archive traffic on a local area
network, for later forensic use.

We perceived in addition to the engineering question a Digital Rights Man-
agement (DRM) aspect of an unusual kind. In the standard DRM scenario, a
large data producer seeks to control use of its data by multiple “small” users. We
see the possibility to turn this around and enable individual users to control with
confidence how their data is to be used by a powerful authority (“Big Brother”).
Why would people agree to have data collected at all? For network traffic in
particular, some benefits of collection are certainly plausible, such as:

– the ability of administrators to diagnose whether a particular network attack
occurred;

– the ability of law enforcement to gather evidence for illegal activity that the
community regards as sufficiently egregious;

– the ability of scientists to analyze suitably sanitized Web surfing activity of
consenting individuals.

? Published at Privacy Enhancing Technologies 2002. c© Springer-Verlag.

How do we restrict the usage rights on archived data to exactly socially pre-
scribed policy—especially given human nature’s inclination to exceed authority?

We designed and prototyped a system using commercially available high-
assurance secure coprocessors. We felt that a working prototype would further
several goals:

– validating that this approach to user privacy works in practice;
– demonstrating the advantages of a computational approach to rights enforce-

ment, compared to strictly a cryptographic one;
– demonstrating the application potential of current commercial off-the-shelf

(COTS) secure coprocessor technology;
– demonstrating a socially equitable use of tamper-respondent technology:

rather than impinging citizens’ computation, it is restricting Big Brother
on their behalf.

We believe this work will have applicability in other domains of protecting
community rights—such as key escrow and recovery in a university PKI. We
discuss this further in Sect. 6.3.

This Paper. Section 2 describes in some detail the motivations behind the Packet
Vault and our Armored Vault. Section 3 describes our design, and Sect. 4 our
implementation of the prototype. Section 5 has our discussion of the prototype
implementation. Section 6 discusses the wider applicability of our design, and
what we plan to do next.

Code. Our implementation is available for public download1, as is the developer’s
toolkit2 for the IBM 4758 platform.

2 Background

In this section we examine some developments motivating our prototype’s sub-
ject matter of comprehensive network traffic archival. Then we describe the
Armored Vault—the original archival tool on which we base our prototype, and
the reasons for seeking to armor such a vault. Finally we list some other works
relevant to our topic.

2.1 Evidence collection

Government authorities on both sides of the Atlantic are keen to get their hands
on network traffic. In the US, this is done by the FBI with the Carnivore tool.
Carnivore is a software system designed to run at an ISP and collect commu-
nications of the parties under surveillance. [9, 18, 3] As part of provisions for
combating terrorism, European Union governments are seeking to revise the
1 http://www.cs.dartmouth.edu/~pkilab/code/vault.tar.gz
2 http://www.alphaworks.ibm.com/tech/4758toolkit

EU Directive on data protection and privacy of 19973 to allow for retention of
telecommunications data in cases of national security significance, apparently
without requirements for case-by-case court authorization and for minimal tar-
geting of specific suspects. [23] The Carnivore looks tame in comparison to this
beast.

2.2 Complete Archival of Net Traffic

2.3 The Packet Vault

Storing all network traffic is on the agenda, and warrants some attention. In
addition to increased surveillance power and convenience for law enforcement,
traffic could be stored for network intrusion evidence, or authorized research.

The Packet Vault is a pioneering device to address the plentiful security
questions posed by a complete record of all network traffic [2]. The follow-on
Advanced Packet Vault can keep up with a 100 Mbit ethernet [1]. A design
goal is to store packets securely, so that they may be accessed only through the
security mechanism imposed by the vault: in an archive (on a CD-ROM) host-to-
host conversations are encrypted with separate secret keys, and the set of these
keys is encrypted using a public key algorithm with the private key held by a
trusted entity, the vault owner. Note that this owner is a person or persons—the
Regents of Michigan University were the owners of the first prototype Vault.
Access to the archived data is accomplished by getting the owner to decrypt the
secret keys for the desired conversations, which they presumably do once they
decide all access conditions are satisfied.

Weaknesses. The Packet Vault approach to securing archives leaves some im-
portant security questions:

Vulnerability to insider attack. The Vault depends on the trustworthiness of
the vault owners. If they are law-enforcement personnel for example, trusting a
complete record of network traffic to them may be objectionable to many users.
It is not very different from letting them have a clear-text record of the net
traffic, and trusting them to use it as all concerned parties (whose data is stored
stored) would like. Even if the owners act in good faith, their private key may
be compromised, which could either expose all the archives on which the public
key of the pair was used, or necessitate those archives’ destruction.

Access flexibility. Accessing the archived packets is not very flexible. Full access
or no access to some set of conversations can be granted to a requester; nothing
else is possible. Some other useful access possibilities include:

– Accessing data at finer granularity than a conversation. Rounding to the
nearest conversation could either skip needed data, or produce excess data
to the extent of making the released data unsuitable for evidentiary use. 4

3 Directive 95/46/EC
4 Wiretap authorizations often include a minimization requirement—data collected is

to be strictly limited to that needed for the investigation

Access to computation seems to provide more power in selecting packets
than a purely cryptographic scheme would.

– Postprocessing before output. Such a capability could be useful in a lot of
applications—deciding the presence or absence of something in the archive
without revealing additional details, anoymizing data for experiments (eg.
blanked source headers), or producing statistics of the net traffic.
It is not clear how a some simple cryptographic extension to the Packet
Vault could provide this particular feature. By definition, computation must
be done on packets which must not themselves be seen in their original
form. Proving that filtered data correctly follows from genuine archive data,
without disclosing the archive data, appears difficult to solve in general using
cryptography alone.

2.4 Related Previous Work

These are some works related to policy expression and compliance checking,
the use of secure coprocessors for controlling access to data, and distribution of
sensitive data with attached access policy.

An early comprehensive and general-purpose system for policy specification
and checking was PolicyMaker [5, 6]. It has since evolved into KeyNote [4]. The
SPKI system [10] deals with authorization in a distributed environment. The
Trust Policy Language (TPL) [11] is another suggested approach to policy ex-
pression and checking. A system such as these would be appropriate to plug
into a more complete version of our prototype to provide a usable mechanism to
specify and check access policy.

Policy-carrying, Policy-enforcing digital objects apply enforcement of com-
putational policy to data. They use language-based control (inlined reference
monitors for Java) to enforce compliance. [15]

A use of secure coprocessors in controlling access to data is described in [25].
It covers protection of executable code, by encrypting the code such that only
the designated coprocessor can access it. This falls more in the traditional DRM
scenario of protecting data of a large organization against individual users. There
is no discussion of access controls finer than “only coprocessor X can run this
code”. Also the coprocessors used5 were hand-built and not commercially avail-
able.

Our work provides an interesting counterpoint to conclusions that controlling
access to data by a large population is inherently doomed [24]. In our scenario, a
large population controls access to their data by a small group, and because the
access points are few, they can be controlled by high-end devices which provide
high assurance.

5 Dyad, utilizing IBM Citadel hardware and a Mach 3.0 microkernel

3 Prototype Design

3.1 Overview

All the interesting features mentioned in Sect. 2.3 (flexible packet selection, post-
processing) could be provided by trusting the vault owners to perform them, for
example perform calculations on the stored packets and give us results. Trusting
refers not just to the integrity of the owners, but also to the integrity of the
machines on which they perform their computations.

We make use of secure hardware to be the “trusted party” in the archival
system, replacing the vault owners previously described. Call this trusted party
Solomon for the duration of this section. Solomon will serve us as follows:

– He possesses an encryption key-pair and a signing key-pair, a description
of how to evaluate the “worthiness” of requests for data, and a description
of what computation must be done to select and process traffic data to be
given to a requester.

– The stored traffic is all encrypted with Solomon’s encryption key. If we do
not wish to trust someone to do this part, we could get Solomon to do it
too.

– Requests for access to the stored data are given to Solomon, who can then
(1) evaluate if the request is worthy of being honored, (2) compute what
data is to be released and (3) perform whatever computation is needed on
that data to produce the final result, which he then signs and releases.

Concretely, we use two secure coprocessors—one for collecting the net traffic
and producing archives, and the other for arbitrating access to the archives. We
refer to them as the Encoder and Decoder respectively. We use two because their
tasks could be separated by space and time, and also the job of the Encoder is
high-load and continuous.

The Encoder encrypts the stored traffic using the Decoder’s encryption key,
and signs the archive using its own signing key. The Decoder must decide if
access requests against archives are authorized, decrypt the archive internally
(no one outside can observe it decrypted) in order to perform selection of the
desired data, compute the query result using the selected data and sign this final
result. Fig. 1 shows an overview of the archive generation and access procedures.

3.2 The Secure Hardware

We use the IBM 4758 model 2 programmable secure coprocessor [17, 19] 6. Some
properties of the 4758 are:

6 Note that the attack by Bond and Anderson [7] penetrated a version of the CCA
software running on the 4758, but not the security provisions of the device itself.
Those remains secure.

Find Matching
Packets

Check
Request

PostProcess

Packets

Sign

Encrypt for
Decoder

Policy Policy

Archive

Request

Result
Decoder

Packets

Encoder

Fig. 1: Overview of armored vault design. Details of the cryptographic organization are
described in Sect. 3.4.

– It can be programmed in C, with full access to an embedded Operating
System (CP/Q++ from IBM) and hardware-accelerated cryptographic func-
tionality. Programs run on a 99-MHz Intel 486 processor, with 4 MB of main
memory on the 002 model.

– With high assurance, it can carry out computation without possibility of
being observed or surreptitiously modified.7

– It can prove that some given data was produced by an uncompromised pro-
gram running inside a coprocessor. This is done by signing the data in ques-
tion with a private key which only the uncompromised program can know.
Details of this process follow.

The coprocessors are realized as PCI cards attached to a host workstation. Cur-
rently drivers exist for Windows NT/2000, Linux, AIX and OS/2 hosts.

Outbound Authentication. The 4758 provides a mechanism for proving that out-
put alleged to have come from a coprocessor application actually came from an
7 The 4758 platform was the first device to receive FIPS 140-1 Level 4 validation [14,

21].

uncompromised instance of that application [19]. This is achieved by signing the
output with an Application key-pair, generated for the application by the copro-
cessor, and providing a certificate containing the public key of the signing pair,
and a certificate chain attesting to this certificate. In this chain is the identity
of the application too. The structure of the chain is shown in Fig. 2. To estab-
lish that the coprocessor application which produced some signed output is the
expected one and is uncompromised one would:

1. Verify the signature using the public key in the application certificate.
2. Verify that all the certificates are signed as appropriate by their parent

certificates.
3. Verify that the identity of the application, stored in the Layer 2 certificate,

is what we expected. This identity includes things like program name, de-
veloper ID and program hash. The identity of the OS in Layer 2 can also be
verified.

When this is done, we can be certain that the correct program produced the
signed output.

3.3 Access Policy

We gather all the information relating to how archives are to be accessed into
an access policy. The policy is thus the central piece of the armored vault. The
Decoder will give access to the archive only in accordance with the access policy,
and no one can extract any more information, since the design of the coprocessor
precludes circumventing its programmed behavior.

To represent access policies we use a table, whose rows represent different
entry points into the data, and whose columns represent the parameters of each
entry point. Anyone wanting access must select which entry point to use, and
then satisfy the requirements associated with it. The parameters associated with
entry points are:

Request template A template of a query selecting the desired data, with pa-
rameters to be filled by a particular access request. We call the format of the
query the data selection language. An example could be “All email to/from
email address X”.

The following two parameters define how the decoder decides whether a request
is legal.

Macro limits Limits on various properties of the result of the query. These
could be things like total number of packets or bytes in the result, how
many hosts are involved in the matching data, or packet rate with respect
to time at the time of archival.

Authorization The authorization requirements for this entry point. These could
be something like “Request must be signed by two district judges”.

This parameter defines how the Decoder will compute a final result for the query
based on the initial data selected.

Contains a public key of the application
(signing or decryption)

Application Certificate

Device Certificate

Generated at manufacture

Layer 3
Application

Layer 2
Operating System

Layers 0 and 1
Device boot code

Coprocessor
output data

OS Certificate
Contains the identity of Layers 2 and 3
Updated by Miniboot on every layer 2 or 3 reload
(ie. every OS or application replacement)

IBM Root Cert

Publically available

Signs

Fig. 2: Simplified certificate chain attesting to an application key-pair which signs output
data. The OS certificate contains the application’s identity information. Layers in the 4758
represent progressive stages in the startup process, as well as a progressively tighter security
environment, essentially with higher layers unable to observe or modify data in lower layers.

Post-processing A filter to apply to the data picked out by the query. Some
examples could be “Scrub all IP addresses” or a statistical analysis of the
data.

The procedure for requesting data from the archive will be to indicate an
entry point, and provide parameters for its request template. The request will
contain the authorization data needed to satisfy the requirements of the chosen
entry point, for example be signed by all the parties who need to authorize the
access.

The actual policy has to balance the opposing motivations of (1) enabling all
acceptable queries8, as decided at the time of archival, to be satisfied and (2)
ensuring that there is no way for anyone, even rogue insiders, to gain access to
more of the data than was intended.

8 Queries could be far in the future.

3.4 Cryptographic organization

The top-level cryptographic organization of the armored vault is as shown in
Fig. 1. Here we describe the details of each step.

The Encoder must be initialized by giving it the public encryption key of the
Decoder which will control access to the archives produced by this Encoder. The
key is contained in an Application Certificate, part of a chain as described in
Sect. 3.2. Note that the encoder can determine if the alleged decoder is genuine
from the application identity in the cert. chain.

The Encoder produces an archive which is structured as shown in Fig. 3. En-
cryption of the stored packets is two-level—first the packets are encrypted with
a TDES session key, and then the session key is encrypted with the encryption
key of the Decoder. The Encoder provides verification for the archive by signing
it and attaching a certificate attesting to the signature, as described in Sect. 3.2.

Encoder Certificate
Chain

Covered by
Signature

TDES Encrypted
with session key

Policy

TDES Session Key
RSA encrypted with
Decoder encr. key

Signature
with encoder sign key

Packets

Fig. 3: Structure of the archive produced by the encoder.

When the Decoder receives a request against an archive, it verifies the archive
by checking the signature and the identity and supporting chain of the Encoder
which produced the archive. It then decrypts the session key using its private
decryption key, decrypts the packet dump using the session key, and carries on
with processing the request. When the final result is computed, it signs it in the
same way that the Encoder signs an archive.

4 Implementation

4.1 Overview

Our setup consists of a Linux PC acting as the host to both the Encoder and
Decoder cards. We picked Linux because we prefer open systems, and the Linux
driver for the 4758 is open-source.

The user interface to the prototype vault consists of a command-line program
running on the host, which performs two tasks with the Decoder:

– Request its public encryption key/certificate together with a certificate chain
(see Sect. 3.2) attesting to the key, and save these in a file. For now the
certificates are in the format used by the secure cryptographic coprocessor
(SCC) interface of the 4758 [12].

– Run a request for data against an archive previously made by the Encoder.

and two tasks with the Encoder:

– Set the encryption key and supporting certificate chain of the Decoder this
Encoder is to work with, using a file generated by the Decoder above.

– Produce an archive given a libpcap-format packet dump. This can only be
done after a partner Decoder is established by supplying its public encryption
key.

Packet dumps can be produced by any packet sniffer program which uses
libpcap as its packet-capture mechanism and allows binary packet dumps to be
produced. Two possibilities are the quintessential tcpdump, and snort.

4.2 Encoder operation

The Encoder takes a libpcap-format packet dump and produces an archive
structured as shown in Fig. 3. It stores the access policy internally, and attaches
it to every archive. It performs everything described in our design, but being an
early prototype is limited to processing only as much data as will fit into the
coprocessor at once (about 1.7 MB with our current prototype).

4.3 The data selection language

We use an existing package, Snort [16], version 1.7, to provide the packet se-
lection capability in our demo. Snort is a libpcap-based Network Intrusion-
Detection System (NIDS) which can select packets using the Berkeley Packet
Filter (BPF) language as well as its own rule system which features selec-
tion by packet content as well as by header fields. This rule language is our
data selection language. The snort rule system is described in detail at http:
//www.snort.org/writing_snort_rules.htm.

We chose Snort as it is an Open Source tool in active development, and active
use. Important features are IP defragmentation, the capability to select packets
by content, and a developing TCP stream re-assembly capability.

Porting Snort. We had to compile a subset of Snort (essentially the packet
detection system) to run inside the Decoder card and interpret requests for
data.

We had to supply implementations for non-STDC functions which were still
needed for packet detection and processing, like inet ntoa and getprotobynumber.

The major challenge was implementing the stdio functions to enable the
transfer of data to and from Snort when it ran inside the Decoder. CP/Q++,
the current 4758 production OS, does not provide filesystem emulation, so we
wrote implementations for a few of the POSIX filesystem calls: (open, write,
etc.). These functions for now operate with memory buffers inside the card.

Snort rules. Snort rules specify what packets Snort selects for further processing
(like logging or alerts). They select packets based packet headers or packet data.
A simple example to select TCP packets from the http port for logging is
log tcp any 80 -> any any

This only performs matching on packet headers. It could be read as “log TCP
packets coming from any host, port 80, going to any host, any port”. A fancier
example using content matching to produce an alert on noticing a potential
attack (whose signature is the hex bytes 90C8 C0FF FFFF) is
alert tcp any any -> 192.168.1.0/24 143

(content: "|90C8 C0FF FFFF|/bin/sh"; msg: "IMAP buffer overflow!";)

4.4 Decoder operation

The Decoder implements our design (limited to small archives which can fit in
the coprocessor at once), with the following exceptions:

– No post-processing is currently possible. This will be a bit of work to im-
plement fully, with reasonable capabilities, so we did not attack it in this
prototype.

– It has no authorization capabilities, except simple macro limits.

The detailed Decoder operation is shown in Fig. 4.

4.5 Access Policy

We implement the access policy as XML-format text, with a row element for
the entry points (rows in the policy table), inside which are XML elements for
all the entry point fields, with the exception of post-processing which we have
not implemented yet. We currently use very quick and simple “parsing” of the
table, with an eye to use the expat XML parser. The table used in the current
version of the prototype is shown in Fig. 5.

Split

RSA
decrypt

TDES
decrypt

Session key
TDES

Policy

Packet
dump

Request
template rule

Make Snort Run Snort

Matched
packets

Check macro
limitsSign

Ciphertext

Signature
from encoder

Supporintg
chain

Verify
signatures

credentials
Authorization

Verify
auth

Split

Archive

Output

Request

Template
Parameters

Credentials

Fig. 4: Decoder operation. The Snort rule used to run Snort is made by instantiating the
template in the policy using values from the request.

4.6 Request Structure

Requests consist of a set of name=value assignments, one for the row number
from the policy table through which the request is going, and the rest assignments
for the request template of the chosen row. An example which could be used with
our sample policy in Fig. 5 is
row=1; port=80

5 Discussion

5.1 Our Implementation

Snort. This was one of the successful aspects of this prototype. Snort is a very
capable packet detection engine, and it runs happily inside the secure coproces-

<?xml version="1.0"?>

<policytable>

<title>

Experimental table

</title>

<row>

<reqtemplate>

log tcp any $port -> any any (content:"sasho")

</reqtemplate>

<macrolimits>

$total_packets < 100

</macrolimits>

</row>

</policytable>

Fig. 5: Current prototype policy. This policy allows the selection of TCP packets containing
the word “sasho”, and coming from some port specified in the request (eg. “port=80”). If
more than 100 packets match, the request will be declined.

sor. It will enable us to extend our policy capabilities considerably, especially
when we start to consider application-level data selection, and reassembled TCP
streams become important.

Policy. Our current prototype policy (in Fig. 5) is fairly basic, but it does
demonstrate many key points about the armored vault:

– Selection of packets can be computation-based. There appears to be no way
to select packets by content using differentiating cryptography9 alone.

– Authorization decisions can be computation-based, and secure since they
are running inside secure hardware. In this case, even in the absence of a
PKI to perform full authorization, an authorization decision can be made
based on the number of packets in the result—no query with more than one
matching packet will be authorized. Since computation must be performed
to calculate such properties of the matching data set, this cannot be done
securely without using secure hardware.

Performance. High performance was not one of the aims of our prototype, but
we include some figures for completeness. The Encoder could process a 1.6 MB
9 meaning that different sections of the stored archive are encrypted with different

keys

packet dump to produce an archive in 6 seconds. A 630K dump took 2.3 seconds.
A 2.0 MB dump failed due to insufficient memory. A Decoder run (without
restrictions on packet number returned) on the 630K archive (1000 packets)
which selected 105 packets took 6.3 sec.

Future optimizations will clearly have to focus on the Encoder, which in
practice will have to keep up with a fast network.

5.2 Relation to the Advanced Packet Vault

One of the primary concerns of the Advanced Packet Vault project from Michi-
gan [1] is speed—to enable the vault to keep up with a 100Mb network at high
load. The major areas of concern are system questions of keeping packets flow-
ing into their final long-term storage as fast as they are picked up. Since we do
not, nor do we intend to, consider questions of system infrastructure, our work
can combine well with the Advanced Vault project to produce a fast and more
secure device. The 4758 Model 2/23 secure coprocessor can perform TDES on
bulk data at about 20 MB per second, which is sufficient to keep up with the
Advanced Vault system infrastructure on a 100 Mb network.

6 Conclusions and Future Work

6.1 Feasibility

We had several goals for our initial experiments. The community had long spec-
ulated on the use of secure coprocessors for computational enforcement of rights
management. We carried this speculation one step further, by completing an
implementation on a commercial platform, that could (in theory) be deployed
on a wider scale with no additional technological infrastructure.

One of the purported advantages of the coprocessor approach to secure data
processing is the ability to insert a computational barrier between the end user
and the raw data. For this advantage to be realizable, however, this barrier must
be able to support useful filter computation. By porting the Snort package inside
the coprocessor environment, we experimentally verified this potential, for the
application domain of archived network data.

6.2 Future Steps for Network Vault

We plan further work both within the application domain of archived network
data, as well as in other domains.

With this domain, we immediately plan to expand our prototype along these
major directions:

Performance. Currently, we limit the size of requests and archives to what can
fit inside the coprocessor at one time. This limitation is unacceptable. We will
augment the current arrangement to enable arbitrary-sized packet dumps and
archives to be passed into the vault coprocessors. The upcoming release of Linux
for the 4758 (as a replacement for CPQ/++) will make this easier, as Linux will
provide more abstract host-card communication services, which will be useful
in implementing a continuous data flow through the vault. When this is done,
archive size will be decided by the long-term storage medium, like CD-ROM.10

We plan to attach the Encoder card to a live packet source (some sniffer) to
enable live data collection.

Policy. Currently, the capabilities of the policy mechanism are very limited. The
query language (Snort rules) is very flexible, but the macro limits and authoriza-
tion procedures are very bland. We plan to implement limits on more parameters
like packet quantities/rates and number of hosts involved. On the authorization
side, the first thing would be to implement a history service—keep a log of ac-
cesses to enable for example a requirement like “packets can only be decrypted
once”. A full authentication of requests would depend on some authorization
infrastructure, like those mentioned in Sect. 2.4. For post-processing, we will
implement scrubbing functions to erase any packet parameters required.

Longer-term issues include setting up a policy administration system (for
non-specialist managers), ensuring that access policy is consistent with overall
goals, and exploring ways to allow access policy to existing archives to change,
without violating existing policy promises.

Systems for authorization sooner or later assume that specific individuals
or roles wield exclusive control over specific private keys. A serious part of a
fully viable data vault would be a deployable infrastructure that makes this
assumption true with reasonably high assurance. Ongoing campus PKI work at
Dartmouth could be very useful here. [13]

As an early sketch of this project considered, [20] the binding of an archive to a
single Decoder leaves the door open to denial of service attacks through Decoder
destruction (just a tamper attempt will do the job). This binding is the current
way of ensuring that the archive is accessed only through its attached policy,
and there are no easy alternatives for achieving this assurance. Investigating the
question will be important in making the armored vault practically acceptable.

6.3 Future Application Domains

The general framework of storing network packets securely and with an attached
access policy, and using secure coprocessors to enforce this access policy applies

10 A fully general solution to this problem broaches the issue of private information
retrieval—since the user (who wants access to the data) may learn unauthorized
things by observing how the coprocessor accesses the large archive. In related work,
we have examined the use of coprocessors for practical solutions to this problem. [22]

to access rules for any large data set. We now discuss a few that we have been
exploring.

Remote Data Storage. We have close ties with the Condor Project at the Uni-
versity of Wisconsin in Madison11, who have expressed an interest in remote
storage of large data sets with associated access controls. This problem falls
squarely into our system of securing data with flexible and assured access policy.

If a researcher at site A wants to send data to site B, but ensure that the data
is accessed only in accordance with some policy, she could proceed as follows. She
uses a version of our Encoder to secure the data and attach her policy. She sends
the data to site B, who have the Decoder to work with the data. They can gain
only the kind of access site A specified. For example access could be limited to
some specific research group, or the data can only be accessed a limited number
of times, or some details about the data must always be hidden even if they are
used in calculations inside the vault.

One coprocessor may suffice in this scenario, and it would have a different
user interface than the armored packet vault (operating via an SSL connection
to a client program perhaps), but the basic idea of computationally-expressed
access control executed inside secure hardware remains.

For an immediate realization of this domain, consider the issues involved if
site A wishes to release archived network data to site B, for use in “legitimate”
research. How can the site A user community—and all other stake-holders—trust
that these usage rules will be followed?

Academic PKI. Here in the Dartmouth PKI Lab, we have been interested in
deploying an academic PKI that has at least some assurances that private keys
remain private.

This domain raises many areas where we need to balance community interest
against privacy interests. For example:

– The community may decide that certain administrative or law enforcement
scenarios may require access to data that students have encrypted with their
keys.

– Students may lose the authenticators (e.g. passphrases, or smart cards) that
guard access to their private keys; one preliminary study [8] showed this was
very common in segments of our undergraduate population.

– Students may encrypt data in the role of an organization officer—but then
may leave before duly delegating access rights to their successor.

All of these scenarios require selective weakening of the protections of cryptog-
raphy, should the community as a whole decide it is justified. Unlike standard
approaches to key escrow and recovery, our armored vault approach permits
tuning of access to exactly the community standard—and also provides defense
against insider attack, since (if the policy and authorization are sound, and the
Level 4 validation is meaningful), neither bribery nor subpoena can enable the
vault operator to go beyond the pre-defined access rules.
11 http://www.cs.wisc.edu/condor/

Appendix

Acknowledgments The authors are grateful to Charles Antonelli and Peter Hon-
eyman at Michigan, John Erickson of HP Labs, and our colleagues in the Dart-
mouth and Wisconsin PKI Labs, for discussion and suggestions.

This work was supported in part by by the U.S. Department of Justice, con-
tract 2000-DT-CX-K001, by Internet2/AT&T, and by IBM Research. However,
the views and conclusions do not necessarily represent those of the sponsors.

References

1. Charles Antonelli, Kevin Coffman, J. Bruce Fields, and Peter Honeyman.
Cryptographic wiretapping at 100 megabits. In SPIE 16th Annual International
Symposium on Aerospace/Defense Sensing, Simulation, and Controls, Orlando,
Apr 2002.

2. C.J. Antonelli, M. Undy, and P. Honeyman. The packet vault: Secure storage of
network data. In Proc. USENIX Workshop on Intrusion Detection and Network
Monitoring, Santa Clara, April 1999.

3. Steven Bellovin, Matt Blaze, David Farber, Peter Neumann, and Eugene
Spafford. Comments on the Carnivore system technical review.
http://www.crypto.com/papers/carnivore_report_comments.html, December
2000.

4. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote
trust-management system version 2. RFC 2704,
http://www.crypto.com/papers/rfc2704.txt, Sept 1999.

5. Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management.
In Proc. IEEE Conference on Security and Privacy, Oakland, CA, May 1996.

6. Matt Blaze, Joan Feigenbaum, and Martin Strauss. Compliance checking in the
PolicyMaker trust management system. In Financial Cryptography. Springer,
1998.

7. Mike Bond and Ross Anderson. API-level attacks on embedded systems.
Computer, 34(10):67–75, Oct 2001.

8. E. Etu and J. McIsaac. Bringing PKI to Dartmouth. Class Project, CS88,
Dartmouth College, June 2001.

9. FBI. Carnivore diagnostic tool.
http://www.fbi.gov/hq/lab/carnivore/carnivore.htm, Mar 2001.

10. Internet Engineeringt Task Force. Simple public key infrastructure (SPKI).
http://www.ietf.org/html.charters/spki-charter.html, 1997.

11. Amir Herzberg, Yosi Mass, Joris Michaeli, Yiftach Ravid, and Dalit Naor. Access
control meets public key infrastructure, or: Assigning roles to strangers. In
Proceedings of the 2000 IEEE Symposium on Security and Privacy (S&P 2000),
Berkeley, CA, May 2000. IEEE.

12. IBM. IBM 4758 PCI Cryptographic Coprocessor Custom Software Interface
Reference.
http://www-3.ibm.com/security/cryptocards/html/library.shtml.

13. N.F.S. Knight. College ’net security gets $1.5m. The Dartmouth, Feb 1 2002.
http://www.thedartmouth.com/.

14. National Institute of Standards and Technology. Security requirements for
cryptographic modules. Federal Information Processing Standards Publication
140-1, 1994.

15. Sandra Payette and Carl Lagoze. Policy-carrying, policy-enforcing digital objects.
In J. Borbinha and T. Baker, editors, ECDL 2000, pages 144–157, Lisbon,
Portugal, 2000.

16. Martin Roesch. Snort - lightweight intrusion detection for networks. In 13th
Systems Administration Conference - LISA ’99. USENIX, November 1999.

17. Sean W. Smith and Steve Weingart. Building a high-performance, programmable
secure coprocessor. Computer Networks, 31:831–860, 1999.

18. Stephen P. Smith, Jr. Henry H. Perritt, Harold Krent, and Stephen Mencik.
Independent technical review of the Carnivore system.
http://www.usdoj.gov/jmd/publications/carniv_final.pdf, Dec 2000.

19. S.W. Smith. Outbound authentication for programmable secure coprocessors.
Technical Report TR2001-401, Department of Computer Science, Dartmouth
College, March 2001. http://www.cs.dartmouth.edu/~pkilab/oatr.pdf.

20. S.W. Smith, C.J. Antonelli, and Peter Honeyman. Proposal: the armored packet
vault. Draft, Sep 2000.

21. S.W. Smith, R. Perez, S.H. Weingart, and V. Austel. Validating a
high-performance, programmable secure coprocessor. In 22nd National
Information Systems Security Conference. National Institute of Standards and
Technology, October 1999.

22. S.W. Smith and D. Safford. Practical server privacy using secure coprocessors.
IBM Systems Journal, 40(3), 2001. (Special Issue on End-to-End Security).

23. Statewatch. European parliament and EU governments on a collision course over
the retention of data.
http://www.statewatch.org/news/2001/nov/15eudata.htm, Nov 2001.

24. Dan Wallach. Copy protection technology is doomed. Computer, 34(10):48–49,
Oct 2001.

25. Bennet Yee and J. D. Tygar. Secure coprocessors in electronic commerce
applications. In Proc. First USENIX workshop on Electronic Commerce, New
York, NY, July 1995.

